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Abstract

In this paper, we investigate the topological and the algebraic struc-
tures of convex subrings of ∗R, a nonstandard extension of R. Next, using
convex rings, we define several kinds of complex bounded polynomials and
under some additional assumptions, we prove that the quasi-standard part
of such polynomial provides an entire function over some nonarchimedean
field extension of C. Finally, we define new bounded points in a non-
standard extension of a topological vector space, and we construct new
nonstandard hulls of topological vector spaces and we show that such
spaces are complete. Some examples are provided to illustrate our con-
struction.
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1 Introduction

The methods of nonstandard analysis have been applied to topology with illu-
minating and satisfying results, see Robinson [18] and Luxemburg[16, 15]. They
provide an alternative to the classical description of a topological space by open
sets. The notion of monad is a fundamental concept which encodes a topology
and most of the subsequent development comes from their properties. Mean-
while, constructing nonstandard hulls turned out to be an effective method for
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obtaining new mathematical objects from those available. For metric spaces,
this was carried out by Robinson. For normed spaces and uniform spaces, this
was accomplished by Luxemburg and by Henson and Moore[7] for topological
vector spaces. In the case of measure spaces, it is the Loeb spaces that play
the role of nonstandard hulls [8]. Roughly speaking, the nonstandard hull is
the quotient of the set of ”bounded” elements by the equivalence relation of
being infinitely close. The latter property is related to a topology whereas be-
ing bounded is associated to a bornology. Bornologies axiomatize an abstract
notion of bounded sets and are introduced as collections of subsets satisfying a
number of properties. A bornological space is a set equipped with a bornology.
Bornological spaces form a category, the morphisms of which are those func-
tions which preserve bounded sets. The theory of bornological spaces plays an
important role in functional analysis, see H. Hogbe-Nlend[9, 10] and Bourbaki
[1].

In this paper, we construct bornologies on ∗X, a nonstandard extension
of a bornological space (X,B). Likewise the topological framework, where at
least two topologies were established by Robinson [18], we will construct two
bornologies on ∗X, the first is called the Q-bornology and generated by ∗B
and the second the S-bornology which is generated by (∗B)B∈B. For instance
in ∗R, balls with positive real radii generate the S-bornology of ∗R and balls
with arbitrary positive radii generate the Q-bornology of ∗R and both of these
bornologies are compatible with the ring structure of ∗R.

Using nonstandard analysis, we make more concrete the analogy between
the topological and the bornological context. In the bornological framework,
bX :=

⋃
B∈B

∗B, the set of bounded points in ∗X, will encode the bornology
B. More precisely, a set is bounded if and only if its nonstandard extension is
included in the set of bounded points and a function is bounded if and only if
its nonstandard extension preserves bounded points. Thus the set of bounded
points in the bornological setting is the counterpart of the monad in the topo-
logical framework.

Furthermore, new bornologies are constructed for metric spaces and locally
convex spaces using convex subrings of ∗R. Recently, the first author [11] es-
tablished new topologies parametrized by convex subrings of ∗R, called QS-
topologies, between the S-topology and the Q-topology.

The paper is organized as follows, section 2 provides a background necessary
for the comprehension of the paper. In section 3, we study convex subrings of ∗R
and we show that they are simply extensions of bR, the ring of bounded numbers
in ∗R. This study involves a comparison between the order topology and the
valuation topology on F̂ = F/iF, the nonstandard hull of F, where F is a convex
subring of ∗R, and iF denotes its maximal ideal. We also provide a complete
description of the maximal and the prime spectrum of bR, see Corollary 3.23.
In section 4, using convex subrings of ∗C, we define several kinds of bounded
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polynomials, and we show that under the assumption, that F̂ has a nontrivial
real-valued valuation, the quasi-standard part of an F-bounded polynomial gives
an entire analytic function over F̂n. More generally, we prove that the quasi-
standard part of an F-bounded polynomial is a generalized power series indexed
by a monoid containing N, see Theorem 4.16. These theorems extend some of
our previous results obtained in [12], in which it is shown that the standard part
of a bounded polynomial, i.e., sending bCn to bC, gives an entire function over
Cn, where bC stands for the ring of bounded elements in ∗C. The proofs are not
a direct transposition of those in [12] and substantial modifications are needed.
The main reason is that a hyperfinite product of elements in F of length in F
is not in general in F. This fact constitute one of the fundamental disparity
between bC and F, a proper subring of ∗C, such that F ) bC. In section 5, we
construct new topologies on ∗E, a nonstandard extension of a topological vector
space E. Then, we define the set of F-bounded points and we construct Ê, the
F-nonstandard hull of E. The space Ê endowed with the quotient topology
has the structure of a topological vector space over F̂. We note that if F = bR
or bC, then Ê is the classical nonstandard hull of E constructed by Henson
and Moore in [7]. Finally, we provide some examples of F-nonstandard hulls of
locally convex spaces.

2 Preliminaries

This section of preliminary notions provides a background necessary for the
comprehension of the paper.

2.1 Nonstandard Analysis.

The approach to nonstandard analysis that we use in the present paper fol-
lows that of Stroyan and Luxemburg[19]. One starts with a superstructure
V (S) =

⋃
Vn(S) over set S, which is often not specified explicitly but chosen

large enough to contain all objects under the consideration, real numbers, neces-
sary vector spaces, etc. We suppose that for the enlargement ∗S of the set S of
basic elements, the natural embedding ∗ : V (S)→ V (∗S) satisfies the following
principles:

The extension principle. ∗s = s for all s ∈ S.

The transfer principle. Let Φ(x1, x2, . . . , xn) be a bounded formula of the
superstructure V (S) and let A1, A2, . . . , An be elements of the superstructure
V (S).
Then the assertion Φ(A1, A2, . . . , An) about elements of V (S) holds true iff the
assertion Φ(∗A1,

∗A2, . . . ,
∗An) about elements of ∗(V (S)) does.

Let ∗(V (S)) be a nonstandard enlargement of a superstructure V (S). An
element x ∈ ∗(V (S)) is called standard if x = ∗X for some X ∈ V (S); internal
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if x ∈ ∗X for some X ∈ V (S); external if x is not internal.
It is well known that a nonstandard enlargement ∗(V (S)) of V (S) can be

chosen so that the following principle is satisfied, see for instance Goldblatt [6].

The general saturation principle. If a family {Aγ}γ ∈ Γ of internal sets
possesses the finite intersection property and card(Γ) < card(V(S)).
Then

⋂
γ∈ΓAγ 6= φ.

In the sequel, we always deal with nonstandard enlargements satisfying the
general saturation principle (they are also called polysaturated).

2.2 Bornological spaces

A bornological space is a type of space which, in some sense, possesses the
minimum structure needed to address questions of boundedness of sets and
functions, in the same way that a topological space possesses the minimum
structure needed to address questions of continuity.

Definition 2.1. Let X be a set. A bornology on X is a collection B of subsets
of X such that

(i) B is stable under inclusions, i.e., if A ∈ B and A′ ⊂ A, then A′ ∈ B;

(ii) B is stable under finite unions, i.e., if B1, . . . , Bn ∈ B, then
⋃n
i=1Bi ∈ B.

We say that the bornology B is covering if X =
⋃
B∈B B.

Elements of the collection B are called bounded sets. The pair (X,B) is
called a bornological set. A base of the bornology B is a subset B0 of B such
that each element of B is a subset of an element of B0.

If X, Y are bornological sets, a function f : X → Y is said to be bounded
if f(B) is bounded in Y for every bounded B in X. One obtains a category of
bornological sets and bounded maps.

We say that a bornology B1 is coarser than the bornology B2 on X if B1 ⊂ B2,
that is, the identity (X,B1)→ (X,B2) is bounded.

2.2.1 Examples

(i) If X is a T1 topological space, there is a bornology consisting of all pre-
compact subsets of X (subsets whose closure is compact). Any continuous
map is bounded with respect to this choice of bornology.

(ii) If X is a metric space, there is a bornology where a set is bounded if it is
contained in some open ball. Any Lipschitz map is bounded with respect
to this choice of bornology.

(iii) If X is a measure space, then the subsets of the sets of finite measure form
a bornology.
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2.3 Valuation rings

In this section, we present some basic definitions of the valuation theory of
commutative fields.

Recall that a subring R of a field K is called a valuation ring if every element
of K is either in R or is the inverse of an element of R.

Proposition 2.2. Let R be a valuation ring in its field of fractions K. Then

(i) M is an R-submodule of K if and only if RM ⊂M ,

(ii) the set of R-submodules of K is totally ordered by the inclusion.

Using inversion in the field K, we can define a bijection from the chain of
R-submodules of K to itself. Indeed, let M be a non-empty set of K. We define

iM = {x ∈ K : x = 0 or 1/x 6∈M}.

Obviously, M is an R-submodule of K if and only if iM is an R-submodule
of K and iiM = M holds for any R-submodule M of K.

Theorem 2.3. [2] The mapping i : M 7→ iM yields an anti-correspondence
between the followings chains

(i) R-submodules of K,

(ii) R-submodules of K containing R and the chain of proper ideals of R,

(iii) Spec(R), the set of all prime ideals of R, and the set of all subrings of K
containing R.

Indeed, if S is a subring of K containing R, then iS is the maximal ideal of
S, thus it is a prime ideal of R.

3 Convex subrings of ∗R
Let ∗R be a nonstandard extension of the field of real numbers R and iR, bR
and ∞R stand for the sets of infinitesimals, bounded (or finite) numbers and
infinitely large numbers in ∗R, respectively. For a comprehensive introduction
to nonstandard analysis, the reader is referred to [6, 8, 13, 19].

First, we recall the definition and some properties of convex subrings of ∗R.

Definition 3.1. Let F be a nonempty subset of ∗R. We say that F is a convex
in ∗R if

(∀x ∈ ∗R)(∀ξ ∈ F)(|x| ≤ |ξ| ⇒ x ∈ F).

Remark 3.2. There is a one-to-one correspondence between convex subrings
of ∗C and those of ∗R : let F′ be a convex subring of ∗C, then F = F′ ∩ ∗R
is a convex subring of ∗R. Conversely, let F be a convex subring of ∗R, then
F′ = {a ∈ ∗C : |a| ∈ F} is a convex subring of ∗C.
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Using the fact that any subring of ∗R contains Z, it is clear that if F is a
convex subring of ∗R, then F contains bR. We prove that the converse remains
true.

Proposition 3.3. If M is a bR-submodule of ∗R, then M is convex in ∗R.

Proof. Let x ∈ ∗R and ξ ∈M \ {0} such that |x| ≤ |ξ|. Thus x/ξ ∈ bR, and we
deduce that x = (x/ξ).ξ ∈ bR.M ⊂M , that is, M is convex in ∗R.

Corollary 3.4. Let F be a subring of ∗R. Then F is convex if and only if F
contains bR.

Therefore, any convex subring F of ∗R is a valuation ring. For the remainder
of this paper we fix the following notations : iF denotes the maximal ideal of F,
and aF = F \ iF, the set of appreciable elements of F and ∞F = ∗R \ F.

Let us recall some properties of iF.

Proposition 3.5. Let F be a convex subring of ∗R. Then

(i) iF consists of infinitesimals only i.e., iF ⊂ iR.

(ii) iF is a convex ideal in F i.e., if x ∈ F and ξ ∈ iF, (|x| ≤ |ξ| ⇒ x ∈ iF).

(iii) F is a field if and only if F = ∗R.

We give some examples of convex subrings of ∗R.

3.0.1 Examples

(i) (Finite Numbers). The ring of bounded nonstandard real numbers bR is
a convex subring of ∗R. Its maximal ideal is iR, the set of infinitesimals.

(ii) (Nonstandard Real Numbers). The field of the real numbers ∗R is (triv-
ially) a convex subring of ∗R. Its maximal ideal is {0}.

(iii) (Robinson Rings). Let ρ be a positive infinitesimal in ∗R. The ring of the
ρ-moderate nonstandard numbers is defined by

Mρ = {x ∈ ∗R : |x| ≤ ρ−n for some n ∈ N}.

Mρ is a convex subring of ∗R. For its maximal ideal we have

Nρ = {x ∈ ∗R : |x| ≤ ρn for all n ∈ N}.

(iv) (Logarithmic-Exponential Rings) Let ρ be a positive infinitesimal in ∗R
and let Eρ be the smallest convex subring of ∗R containing all iterated
exponentials of ρ−1, that is,

Eρ = {x ∈ ∗R : |x| ≤ expn(ρ−1) for some n ∈ N},
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where exp0(x) = x and expn(x) = exp(expn−1(x)) for x ∈ ∗R and n > 0.
The maximal ideal of Eρ is

iEρ = {x ∈ ∗R : |x| ≤ 1

expn(ρ−1)
for all n ∈ N}.

(v) Let ω be an infinite positive number in ∗R.

Pω = {x ∈ ∗R : |x| ≤ nω for some n ∈ N},

Pω is a convex subring of ∗R, its maximal ideal is given by

iPω = {x ∈ ∗R : |x| ≤ 1

nω
for all n ∈ N}.

One can easily check that Pω = Mexp(−ω).

The previous three examples can be generalized using filtrations of F by
bR-submodules of ∗R. Our treatment is similar but different from the classical
theory of filtrations.

Let (Fn)n∈Z be a decreasing sequence of bR-submodules of ∗R such that

. . . ⊂ Fn+1 ⊂ Fn . . . ⊂ F1 ⊂ F0 = bR ⊂ F−1 ⊂ . . . F−n ⊂ F−n−1 ⊂ . . . ⊂ ∗R

In particular, (Fn)n≥1 is a sequence of proper ideals of bR, so Fn ⊂ iR, for all
n ≥ 1.

Assume that the sequence (Fn)n∈Z satisfy the following two conditions:

(F1) For all n,m ∈ Z, there exists k ∈ Z such that Fn Fm ⊂ Fk.

(F2) For n > 0, Fn+1 ⊂ iF−n ⊂ Fn.

One can easily check that the condition (F1) is equivalent to for every n > 0,
there exists k > 0 such that F 2

−n ⊂ F−k.
Let

F =
⋃
n∈Z

Fn.

Obviously, F is a bR-submodule of ∗R containing bR. The condition (F1)
yields F is a subring of ∗R extension of bR, hence F is a valuation ring and its
maximal ideal is given by

iF = i

(⋃
n∈N

F−n

)
=
⋂
n∈N

iF−n =
⋂
n∈N

Fn
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and the last equality follows from the condition (F2).

Typical examples of filtrations satisfying the conditions (F1) and (F2) are
given by principal fractional ideals generated by asymptotic scales. The reader
is referred to Astrada and Kanwal[4] for the classical definition of asymptotic
sequence of functions, and to Jones [5] and to Van den Berg [21] for the non-
standard treatment of asymptotics.

Definition 3.6. [11] A sequence (λn)n∈N of infinitesimal positive numbers (ex-
cept possibly n = 0) is called an asymptotic scale if it satisfies the following
conditions:

(i) for all n ∈ N, λn+1

λn
∈ iR,

(ii) for every n ∈ N, there is k ∈ N such that λk ≤ λ2
n.

The sequence (λn)n∈N extends to (λn)n∈Z by putting

λ−n =
1

λn
for n ∈ N \ {0}.

Let Fn be the principal fractional ideal generated by λn, that is, for n ∈
Z \ {0}

Fn := λn
bR.

One can easily check that if (λn) is an asymptotic scale, then (Fn)n∈Z is a chain
of decreasing bR-submodules of ∗R satisfying the conditions (F1) and (F2).
Indeed, F−n = F−1

n and iF−n = λn
iR. Hence

F =
⋃
n∈Z

Fn = {x ∈ ∗R : x ∈ λ−nbR for some n ∈ N}

is a convex subring of ∗R and its maximal ideal is given by

iF =
⋂
n∈N

Fn = {x ∈ ∗R : x ∈ λnbR for all n ∈ N}.

Using convex subrings of ∗R, a variety of fields F̂ is constructed by Todorov[20].
These fields are called F-asymptotic hulls and their elements F-asymptotic num-
bers. This construction can be viewed as a generalization of A. Robinson’s
theory of asymptotic numbers, see Lightstone-Robinson [14].

Definition 3.7. Let F be a convex subring of ∗R. The F-asymptotic hull is the
factor ring F̂ = F/iF.

Let ŝt : F −→ F̂ stand for the corresponding quotient mapping, called the
quasi-standard mapping.

If x ∈ F, we shall often write x̂ instead of ŝt(x) for the quasi-standard part
of x.
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We can define an order relation in F̂, inherited from the order in ∗R, by

x̂ ≤ ŷ if there are representatives x, y with x ≤ y.

Using the convexity of F, the following proposition is straightforward

Proposition 3.8. (F̂,≤) is a completely ordered field.

We note that Todorov[20] proved a strong form of Proposition 3.8 claiming

that F̂ is a real closed field, that is, F̂ is elementarily equivalent to the real
numbers. In other words, it has the same first-order properties as the reals: any
sentence in the first-order language of fields is true in F̂ if and only if it is true
in the reals.

3.0.2 Topologies on F-asymptotic hulls

Let F be a ring extension of bR filtered by (Fn)n∈Z, a decreasing sequence of
bR-modules, satisfying the conditions (F1) and (F2).

For x ∈ F, let v be the order function defined by

v(x) = sup{n ∈ Z : x ∈ Fn} ∈ Z ∪ {+∞}.

If v is known then so are the Fn, for Fn is the set of x such that v(x) ≥ n.
The following equivalences directly follow from the definition of v:

(i) v(x) = p if and only if x ∈ Fp and x 6∈ Fp+1,

(ii) v(x) = +∞ if and only if x ∈ iF =
⋂
n∈N Fn.

Besides, for x, y ∈ F, we have

(iii) v(x− y) ≥ min(v(x), v(y)),

(vi) v(λx) ≥ v(x), for every λ ∈ bR,

(v) if x− y ∈ iF, then v(x) = v(y).

Using the property (v), we define v̂, the order function on F̂ by

v̂(a) := v(x)

where x is any representative of a ∈ F̂, and the previous properties hold for all
elements in F̂.

Remark 3.9. If we replace the condition (F1) by the usual condition of the
filtration, that is, for all n,m ∈ Z, Fn Fm ⊂ Fm+n, we obtain v(xy) ≥ v(x) +

v(y), for all x, y ∈ F. Hence v̂ is a pseudo-valuation on F̂.
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Let now

δ(a, b) := F̂× F̂→ [0,+∞) : (a, b) 7→ e−v̂(a−b).

The previous properties of v show that (F̂, δ) is an ultrametric space. More-

over, F̂n := Fn/
iF is a fundamental system of neighborhoods of zero for this

metric topology. There is also another natural topology on F̂ induced by the
order.

Theorem 3.10.

(i) The ultrametric topology is coarser than the order topology on F̂.

(ii) If Fn is generated by an asymptotic scale (λn), then these two topologies

coincide. Moreover, the intervals (−λ̂n, λ̂n) is a fundamental system of
neighborhoods of zero.

(iii) The metric space (F̂, δ) is complete.

Proof. (i) Let n ∈ N and r be a positive element of Fn \ Fn+1. We have

(−r, r) = r(−1, 1) ⊂ Fn bR ⊂ Fn. Hence (−r̂, r̂) ⊂ F̂n.
(ii) For any r ∈ aF+, there exists n ∈ N such that r 6∈ Fn, hence r > λn,

that is, (−λn, λn) ⊂ (−r, r). This shows that the order topology coincides with

the ultrametric topology. Moreover, the intervals (−λ̂n, λ̂n) is a fundamental
system of neighborhoods of zero, since for any n ∈ N, (−λn+1, λn+1) ⊂ Fn+1 ⊂
(−λn, λn).

(iii) The completeness of F̂ is proved in [11].

Definition 3.11. We say that a valuation v is compatible with the order of F̂
if it satisfies

∀x, y ∈ F̂ : |x| ≤ |y| =⇒ v(x) ≥ v(y).

Proposition 3.12. A valuation v is compatible with the order of F̂ if and only
if bR ⊂ {x ∈ F : v(x̂) ≥ 0}.

Proof. =⇒ : Let x ∈ bR, then there exists n ∈ N such that |x| ≤ n, hence

|x̂| ≤ n. Since the valuation v is compatible with the order of F̂, we obtain
v(x̂) ≥ v(n) ≥ 0.

⇐= : Let x, y ∈ F̂ such that 0 < |x| ≤ |y|, then there exists x1 and y1 in aF,
representatives of x and y respectively such that |x1| ≤ |y1|. This shows that
x1/y1 is bounded. Thus v(x/y) ≥ 0, that is, v(x) ≥ v(y).

From the inclusion bR ⊂ {x ∈ F : v(x̂) ≥ 0}, we obtain {x ∈ F : v(x̂) > 0} ⊂
iR. Hence aR ⊂ {x ∈ F : v(x̂) = 0}, where aR = bR \ iR .

Proposition 3.13. If F̂ has a nontrivial real-valued valuation compatible with
the order of F̂, then the order topology coincides with the valuation topology on
F̂.
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Proof. Let v be a nontrivial real-valued valuation on F̂. Then there exists a ∈
F̂+, such that 0 < v(a) < +∞. Hence {x : |x| ≤ an} ⊂ {x : v(x) ≥ nv(a)}, this
shows that the valuation topology is coarser than the order topology. Now, let
α ∈ F̂+ and r := v(α). Then {x : v(x) > r} ⊂ {x : |x| < α}.

Proposition 3.14. If F̂ has a nontrivial real-valued valuation v, then

(i) {x ∈ F : v(x̂) ≥ 0} is a maximal subring of F.

(ii) Moreover, if v is compatible with the order, then

F =
⋃
n∈N

1

αn
bR and iF =

⋂
n∈N

(−αn, αn)

where α is any element in aF+, such that 0 < v(α̂) < +∞.

Proof. (i) Let G be a subring of F such that G ) {x ∈ F : v(x̂) ≥ 0}. Then

there exists b ∈ G such that v(̂b) < 0. Since iF = {x ∈ F : v(x̂) = +∞} ⊂ G,

we have only to show that aF ⊂ G. Let x ∈ aF, then v( x̂
b̂n

) = v(x̂)− nv(̂b) > 0
for n large. Hence x

bn ∈ G, that is, x ∈ bnG. Thus F ⊂ G.
(ii) Let α ∈ aF+ such that 0 < v(α̂) < +∞. Hence α ∈ iR+ \ iF. Let

x ∈ aF, then there exists n ∈ N such that v(1/α̂n) < v(x̂). By compatibility of
the valuation v with the order, we get |x̂| < 1

α̂n . Thus |x| < 1
αn .

Example 3.15. The Robinson valuation v(x) = st(logρ(|x|)) is compatible with
the order of ρR.

3.1 Naturals in F
For studying internal polynomials sending F to F, see section 4.1, we expect
that the following two natural properties are satisfied: hyperfinite sums and
products of elements in F of length N ∈ F+ ∩ ∗N belong to F. These two
properties are satisfied when F = bR, since bR ∩ ∗N = N. Whereas in the
general case, hyperfinite products of elements in F are not in F. The main
reason for that the exponential function is not F stable, that is, there exists
a ∈ F and exp(a) 6∈ F.

The aim of this section is to define the set of naturals in F, denoted by
FN, where the mentioned properties of the sums and the products are satisfied.
Next, we introduce F#, a convex subring of F, such that exp(F#) ⊂ F and
F# ∩ ∗N = FN.

Definition 3.16. We define the set of naturals in F by

FN = {ν ∈ ∗N : ∀R ∈ F+, R
ν ∈ F}

where F+ = F ∩ ∗R+, the set of non-negative elements of F.

The following properties are straightforward
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Proposition 3.17.

(i) FN is a semiring.

(ii) Let (xi) be an internal sequence in F and N ∈ FN. Then the product∏N
i=1 xi is in F.

(iii) N ⊂ FN ⊂ F ∩ ∗N.

Proposition 3.18.

(i) If F̂ has a nontrivial real-valued valuation compatible with the order of F̂,
then FN = N.

(ii) If F̂ is an exponential field (i.e., ex ∈ F for any x ∈ F), then FN = F∩ ∗N.

Proof. (i) Let R ∈ F+ such that v(R̂) < 0, hence R > 1. Let ν ∈ FN and assume
that ν ∈ ∞N. Thus Rν ≥ Rn for any n ∈ N. Since the valuation is compatible
with the order, we obtain v(R̂ν) ≤ nv(R̂) for any n ∈ N, a contradiction. It
follows that ν ∈ N.

(ii) Let ν ∈ F ∩ ∗N, and R ∈ F+, we have 0 ≤ Rν ≤ eRν . By convexity, we
get Rν ∈ F, i.e., ν ∈ FN.

We compute the set of naturals in examples 3.0.1.

Corollary 3.19.

(i) If F = bR, then FN = N.

(ii) If F = Mρ (or F = Pω), then FN = N.

(iii) If F = Eρ, then FN = F ∩ ∗N.

More generally, let us define

F# = {α ∈ ∗R : ∀R ∈ F+, R
|α| ∈ F+}.

Clearly, F# is a subring of ∗R. Moreover, we have

bR ⊂ F# ⊂ F and F# ∩ ∗N = FN.

As an example, one can show by direct computations that M#
ρ = bR.

The following mappings are well defined

(i) ln : F+ \ iF→ F,

(ii) ln : ∗R+ \ F+ → ∗R+ \ F#
+ , where F#

+ = F# ∩ ∗R+,

(iii) exp : F# → F+. Moreover, if there exists G a subring of ∗R such that
G ⊃ F# and exp(G) ⊂ F+, then F# ⊂ G ⊂ F.
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3.2 Algebraic description of the Robinson field ρR
Given ρ, a positive infinitesimal number, Robinson[14] constructed ρR, the field
of real ρ-asymptotic numbers, and defined a valuation topology on ρR.

In this section, we will describe an algebraic construction of such field.
Let R be a valuation ring which is not a field, and Q its fraction field. Thus

R is a local ring and, m will denote its maximal ideal.
Pick ρ a nonzero element in m. Let Rρ be the smallest subring of Q con-

taining R and 1
ρ .

Proposition 3.20. Rρ is the localization of R with respect the multiplicative
set {1, ρ, ρ2, . . . , }, that is, Rρ =

⋃
n≥1

1
ρnR. Its maximal ideal is given by

mρ =
⋂
n≥1 ρ

nR and ρ 6∈ mρ.

Proof. Clearly
⋃
n≥1

1
ρnR is the smallest subring of Q containing R and ρ. Now,

we have only to prove that mρ =
⋂
n≥1 ρ

nR. Since
⋂
n≥1 ρ

nR is a proper ideal
in R, we have

⋂
n≥1 ρ

nR ⊂ mρ. Conversely, let x 6∈
⋂
n≥1 ρ

nR. Then there

is n ∈ N such that x
ρn 6∈ R. Since R is a valuation ring, we obtain ρn

x ∈ R,

i.e., 1
x ∈

1
ρnR ⊂ Rρ. Hence x is invertible in Rρ and x 6∈ mρ. Finally ρ 6∈ mρ,

otherwise ρ will be invertible in R.

The following shows that the latter construction is useful if R is a non-
Noetherian ring.

Proposition 3.21. Suppose that R is Noetherian valuation ring. Then Rρ = Q,
the field of fractions of R.

Proof. This follows from the inclusion mρ ⊂
⋂
n≥1m

n and the Krull’s intersec-
tion theorem which states that

⋂
n≥1m

n = {0}.

Let us recall that a Noetherian valuation ring is either a field or a discrete
valuation ring, that is, its value group is isomorphic to Z.

Theorem 3.22.

(i) If I is an ideal in R such that
√
I $ m, then I ⊂

⋂
ρ∈m\

√
I mρ. Moreover,

if I is a radical ideal non maximal, then I =
⋂
ρ∈m\I mρ.

(ii) If p is a prime ideal in R, non maximal, then p =
⋂
ρ∈m\p mρ.

(iii) The maximal ideal m ⊃
⋃
ρ∈m\{0}mρ. Furthermore, if

⋂
ρ∈m\{0}Rρ = R,

then m =
⋃
ρ∈m\{0}mρ.

Proof. (i) Let z ∈ I and assume that there exists ρ ∈ m \
√
I such that z 6∈ mρ.

Then there exists n ∈ N, n ≥ 1 such that z
ρn 6∈ R, thus ρn

z ∈ R. Hence ρ ∈
√
I,

a contradiction. Therefore I ⊂
⋂
ρ∈m\

√
I mρ

Conversely, using the fact that ρ 6∈ mρ, for any non-zero element of m, we obtain
m \ J ⊂

⋃
ρ∈m\J m \mρ. Thus, if J is a radical ideal, then J =

⋂
ρ∈m\J mρ.

13



(ii) Clear.
(iii) Obviously, we have

⋃
ρ∈m\{0}mρ ⊂ m. Conversely, let x ∈ m and

assume that for any ρ, non-zero element of m, x 6∈ mρ, then, there exists n ∈ N
such that x

ρn 6∈ R, so its inverse ρn

x ∈ R. Hence 1
x ∈

⋂
ρ∈m\{0}Rρ = R, a

contradiction.

Corollary 3.23.

(i) If p is a prime ideal in bR, non maximal, then p =
⋂
ρ∈m\pNρ.

(ii) The maximal ideal, iR =
⋃
ρ∈m\{0}Nρ.

For the definition of Nρ, see Examples 3.0.1 (iii).

Proof. We have only to show that
⋂
ρ>0Mρ = bR. Let x 6∈ bR and

A = {n ∈ ∗N : |x|1/n > n}.

A is an internal subset of ∗R containing N, henceA contains some infinite integer
N ∈ N∞. Let ρ := |x|−1/N . Since ρ < 1/N , we get ρ ∈ iR and |x| ≥ ρ−n for all
n ∈ N, i.e., x 6∈Mρ.

4 Bornologies on ∗X

Definition 4.1. Let (X,B) be a bornological space. Then B∗X =
⋃
B∈B

∗B is
called the set of bounded points of ∗X.

Similarly to the topological context where two topologies are considered on
a nonstandard extension of a topological space, we will construct bornologies
on a nonstandard extension of a bornological space.

Definition 4.2. Let (X,B) be a bornological space. Then

(i) (∗B)B∈B generates a bornology on ∗X called the S-bornology.

(ii) {B∗X} generates a bornology on ∗X called the S-trivial bornology.

(iii) ∗B generates a bornology on ∗X called the Q-bornology.

Elements of the S-bornology (resp. Q-bornology) are called S-bounded (resp.
Q-bounded).
Hence A a subset of ∗X is S-bounded if there exists B ∈ B such that A ⊂ ∗B
and A is Q-bounded if there exists B ∈ ∗B such that A ⊂ B.

Trivially, the S-bornology is coarser than the Q-bornology.

Proposition 4.3. The S-trivial bornology is coarser than the Q-bornology.

This is a direct consequence of the following lemma, the proof of which
requires that V (∗X) is an enlargement.
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Lemma 4.4. Let (X,B) be a bornological space. Then there exists B ∈ ∗B such
that B∗X ⊂ B.

Proof. The binary relation P on B×B defined by P (A,B) if A ⊂ B is concurrent.
If A1, . . . , An ∈ B then B = A1 ∪ . . . ∪ An satisfies P (Ai, B), 1 ≤ i ≤ n. Since
V (∗X) is an enlargement, there exists B ∈ ∗B, so that ∗A ⊂ B for all A ∈ B
and hence B∗X ⊂ B.

Lemma 4.4 and the transfer principle imply the following theorem :

Theorem 4.5. Let (X,B) and (Y,B′) be two bornological spaces and f : X → Y
be a mapping. Then f is bounded if and only if ∗f(B∗X) ⊂ B′∗Y

In other words, f : X → Y is bounded if and only if f sends bounded points
of ∗X to bounded points of ∗Y .

We note that some intermediate bornologies can be considered in the context
of metric spaces and locally convex spaces.

For instance, in ∗R, the collection of subintervals with positive real radii is a
base for the S-bornology and bR is a base the S-trivial bornology. The collection
of subintervals with positive hyperreal radii is a base for the Q-bornology. Now,
let F be a convex subring of ∗R, subintervals with radii in aF+ is a base for a
bornology called the F-bornology.
The bornology generated by {F} is called the F-trivial bornology. Hence

S-bornology ⊂ F-bornology ⊂ F-trivial bornology ⊂ Q-bornology.

More generally, let (X, d) be a metric space and F be a convex subring of ∗R,
the collection of balls {Br(x) ⊂ ∗X : x ∈ X, r ∈ aF+} is a base for a bornology
on ∗X called the F-bornology. Besides, when F = bR, this bornology is reduced
to the S-bornology and for F = ∗R, we obtain the Q-bornology.

4.1 Bounded Polynomials

Let n ∈ N, n ≥ 1. A multi-index ν = (ν1, . . . , νn) is just an element on Nn and
as usual we define |ν| = ν1 + . . .+ νn.
Let z = (z1, . . . , zn) ∈ Cn and ν = (ν1, . . . , νn) a multi-index. If aν ∈ C then
aνz

ν = aνz
ν1
1 . . . zνnn is called a monomial. A polynomial in n variables is a

function P : Cn → C of the form P (z) =
∑
|ν|≤d aνz

ν , where d ∈ N and aν ∈ C.

The set of all polynomials in n variables is denoted by C[T1, . . . , Tn]. Every
polynomial in ∗ (C[T1, . . . , Tn]) is called a nonstandard polynomial. If follows
by the transfer principle that every nonstandard polynomial can be written in
the form P (z) =

∑
|ν|≤d aνz

ν , where aν ∈ ∗C and d ∈ ∗N. We associate to P

the internal polynomial |P | defined by |P |(z) =
∑
|ν|≤d |aν |zν . The set of all

internal polynomials in n variables is denoted by C[T1, . . . , Tn]int.
We will define several kind of boundedness of internal polynomials and pro-

vide characterizations in terms of their coefficients.
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Definition 4.6. Let P ∈ C[T1, . . . , Tn]int be an internal polynomial and F and
G be two convex subrings of ∗C such F ⊂ G. We call P

(i) an (F,G)-bounded polynomial if P (Fn) ⊂ G,

(ii) an absolutely (F,G)-bounded polynomial if |P |(Fn) ⊂ G,

(iii) an (F,G)-infinitesimal polynomial if P (Fn) ⊂ iG.

In fact, we will prove in Corollary 4.8 that the first two notions of bounded-
ness defined above coincide.

Let G
FC[T1, . . . , Tn] denote the set of (F,G)-bounded internal polynomials.

We simply denote by FC[T1, . . . , Tn] := F
FC[T1, . . . , Tn], the set of (F,F)-bounded

polynomials and by
iFC[T1, . . . , Tn] the set of (F,F) infinitesimal polynomials.

The following proposition gives a characterization of boundedness of internal
entire functions.

Proposition 4.7. Let f ∈ ∗O(Cn) be an internal entire function, f =
∑
ν∈∗Nn aνz

ν .
Then

(i) f is (F,G)-bounded if and only if for any R ∈ F+, there exists CR ∈ G+,
such that |aν |R|ν| ≤ CR, for any ν ∈ ∗Nn.

(ii) f is (F,G)-infinitesimal if and only if for any R ∈ F+, there exists CR ∈
iG+, such that |aν |R|ν| ≤ CR, for any ν ∈ ∗Nn.

Since the proofs of the two statements are similar, we prove only (i).

Proof. (i) Let f =
∑
ν∈∗Nn aνz

ν be an (F,G)-bounded entire function and R be
any positive number in F. We denote by TR = {(ξ1, . . . , ξn) ∈ ∗Cn, |ξ1| = . . . =
|ξn| = R}. Applying the Cauchy integral formula, we obtain

aν =
1

(2πi)n

∫
TR

f(ξ1, . . . , ξn)

ξν1+1
1 . . . , ξνn+1

n

dξ1 . . . dξn.

Again, by transfer, the polynomial f attains its maximum at some point
ξR ∈ TR. Since f is (F,G)-bounded, we have f(ξR) ∈ G. Hence there exists
CR ∈ G+, such that

|aν | ≤
CR
R|ν|

, ∀ν ∈ ∗Nn.

Now, we verify the converse. Let z = (z1, . . . , zn) ∈ Fn, then there exists
R ∈ F+, such that |zi| ≤ R, for any i = 1, . . . , n. By hypothesis, there exists
C2R ∈ G+, such that |aν |(2R)|ν| ≤ C2R for each ν ∈ ∗N. Hence

|f(z)| ≤
∑
ν∈∗Nn

|aν |R|ν| ≤
∑
ν∈∗Nn

|aν |(2R)|ν|
1

2|ν|
≤ C2R

∑
ν∈∗Nn

1

2|ν|
≤ 2n C2R.

Therefore, f is (F,G)-bounded.
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Corollary 4.8. An internal entire function f ∈ ∗O(Cn) is (F,G)-bounded if
and only if f is absolutely (F,G)-bounded.

In order to give a characterization of boundedness in terms of the coefficients
of the polynomial, we introduce the following

Definition 4.9. Let F and G be two convex subrings of ∗C such that F ⊂ G.
Define

G
FN := {ν ∈ ∗N : ∀R ∈ F+, R

ν ∈ G}

the set of (F,G) naturals.

We remark that F
FN, the set of (F,F) naturals, is reduced to FN, the set of

naturals in F. Moreover, by convexity of G, we have

ν ∈ G
FN if and only if ∀n ∈ F ∩ ∗N, nν ∈ G.

Example 4.10. If F = bR and G = Mρ, then

G
FN = {ν ∈ ∗N : ν ≤ α| ln ρ| for some α ∈ R+} = ∗N ∩ (| ln ρ| bR+).

Proposition 4.11. Let F and G be two subrings of ∗C such that F ⊂ G. Then

(i) G
FN is a monoid.

(ii) N ⊂ FN ∪ GN ⊂ G
FN ⊂ G ∩ ∗N.

(iii) Let n,m ∈ ∗N such that m ≤ n. If n ∈ G
FN, then m ∈ G

FN.

(iv)
(
iF
)N ⊂ iG for any N ∈ ∗N \ G

FN.

(v) If bC ( G, then N ( G
bCN.

Proof. The properties(i) and (ii) are straightforward.
(iii) Let α ∈ iF and N ∈ ∗N \ G

FN. Then there is R0 ∈ F+ such that RN0 6∈ G,
that is, 1

RN0
∈ iG. The number αR0 ∈ iF so it satisfies |αR0| < 1. Hence

|αN | ≤ 1

RN0
∈ iG.

By convexity of iG, we deduce that αN ∈ iG.
(iv) Since bC ( G, then there exists ω ∈ G ∩ ∞R+. Let N := [lnω], the

greatest integer of lnω. Thus N ∈ G ∩∞N because N ≤ ω. For any n ∈ N, we
have nN ≤ ωn ∈ G. Hence N ∈ G

bCN.

Theorem 4.12 (Principles of permanence of G
FN).

Let A be an internal subset of ∗N and F and G be two subrings of ∗C such
that F ⊂ G.

(i) (The Underflow Principle) Let K ∈ ∞N be an infinite integer. If every
H ∈ ∗N \ G

FN with H ≤ K belongs to A, then there is some k ∈ G
FN such

that [[k..K]] ⊂ A.
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(ii) (The Overflow Principle) Let k ∈ G
FN. If every n ∈ G

FN with n ≥ k belongs
to A, then there is some K ∈ ∗N \ G

FN such that [[k..K]] ⊂ A.

Since the proofs are similar to the classical permanence principles, see Goldl-
blatt [6] p.136, we will give only the proof of the underflow principle.

Proof. (i) Our hypothesis is that [[H..K]] ⊂ A for all H ∈ ∗N \ GFN with H ≤ K.
Let

B = {k ∈ ∗N : [[k..K]] ⊂ A}.
B is a nonempty internal subset of ∗N. Then by the internal least number
principle it has a least element k, and a such k must belong to G

FN because if
k ∈ ∗N \ G

FN then k − 1 would be in ∗N \ G
FN, so by our hypothesis k − 1 would

also be in B but less than k.

Theorem 4.13. Let P ∈ C[T1, . . . , Tn]int be an internal polynomial, that is,

P =
∑
|ν|≤d

aνT
ν , where aν ∈ ∗C, d ∈ ∗N∞.

Then P is (F,G)-bounded if and only if the following two conditions are satisfied

(i) aν ∈ G for |ν| ∈ G
FN,

(ii) |aν |
1
|ν| ∈ iF for |ν| 6∈ G

FN; |ν| ≤ d.

Proof. Let P =
∑
|ν|≤d aνT

ν be an (F,G)-bounded polynomial. Then, by

Proposition 4.7, there exists C ∈ G+ such that |aν | ≤ C for each ν ∈ ∗Nn.
In particular, aν ∈ G for |ν| ∈ G

FN.

Suppose there exists |ν0| 6∈ G
FN such that |aν0 |

1
|ν0| 6∈ iF. So, there exists m ∈ aF+

such that
|aν0 |

1
|ν0| ≥ m.

The condition |ν0| 6∈ G
FN implies that there exists R0 ∈ F+ such that R

|ν0|
0 6∈ G.

Let R = R0

m . Clearly, R ∈ F and for any C ∈ G+, we have

|aν0 |R|ν0| ≥ R
|ν0|
0 ≥ C

which contradicts Proposition 4.7(i).
Conversely, let R ∈ F+, we set

AR = {|ν| ∈ ∗N : |aν |
1
|ν| ≤ 1

R+ 1
}.

AR is an internal subset of ∗N containing {m ∈ ∗N \ G
FN : m ≤ d}. By the

permanence principle, there exists n0 ∈ G
FN, such that [[n0..d]] ⊂ AR. Hence

|aν |Rν ≤ 1 for every ν ∈ ∗Nn, with n0 ≤ |ν| ≤ d.

For |ν| ≤ n0, we have aν R
ν ∈ G, as Rν ∈ G and aν ∈ G. Let MR =

max|ν|≤n0
(|aν |Rν). MR ∈ G and |aν |R|ν| ≤ max(1,MR) for any ν ∈ ∗Nn,

|ν| ≤ d, which shows that P is (F,G)-bounded.
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Corollary 4.14. The ring G
FC[T1, . . . , Tn] is invariant by any partial derivative

∂α for α ∈ Nn.

Let P ∈ G
FC[T1, . . . , Tn]. The mean value theorem yields, if x, y ∈ Fn such

that x − y ∈ iGn, then P (x) − P (y) ∈ iG. This allows us to define P̂ , the
pointwise function associated to P :

P̂ : Fn/iGn → Ĝ.

Now we consider the following situation: letQ =
∑
|ν|≤d aνT

ν ∈ C[T1, . . . , Tn]int

be an internal polynomial where aν ∈ bC and d ∈ ∞N. A natural question arises
: does there exist a proper convex subring F of ∗C such that the polynomial Q
is F-bounded?

For ω ∈ ∞N, let us denote

Pω = {z ∈ ∗C : ∃R ∈ R+, |z| ≤ Rω}.

Pω is a convex subring of ∗C. Moreover, (Pω)ω is increasing, that is, if
ω1, ω2 ∈ ∞N with ω1 < ω2, then Pω1

⊂ Pω2
.

For d ∈ ∞N, let us define

Fd =
⋃
k≥0

Pdk ,

where Pd0 = bC. Clearly, Fd is a proper convex subring of ∗C.

Theorem 4.15. Let Q =
∑
|ν|≤d aνT

ν ∈ C[T1, . . . , Tn]int be an internal poly-

nomial where aν ∈ bC and d ∈ ∞N. Then for any k ∈ N, we have

Q(Pndk) ⊂ Pdk+1 .

In particular, the polynomial Q is Fd-bounded, i.e., Q(Fnd ) ⊂ Fd.

Proof. Let M = max|ν|≤d(|aν |). By assumption M ∈ bR. Let z = (z1, . . . , zn) ∈
Pndk , then there exists a real number R, R > 1 and |zi| ≤ Rd

k

. Put ω = dk.

|Q(z)| ≤ |Q|(Rω, . . . , Rω) ≤M
∑
|ν|≤d

(Rω)|ν| ≤M
(
Rω(d+1)

Rω − 1

)n
≤ 2nM(Rn)ωd.

This shows that Q(z) ∈ Pdk+1 .

4.2 Quasi-standard part of bounded internal entire func-
tions

Let f ∈ ∗O(Cn) be an (F,G)-bounded internal holomorphic function over ∗Cn.
Then

f(z) =
∑
ν∈∗Nn

aνz
ν and f(Fn) ⊂ G.
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For N ∈ ∗N, let us denote fN =
∑
|ν|≤N aνz

ν the truncation of the series f up
to the order N . It is clear that for any N ∈ ∗N, the internal polynomial fN is
(F,G)-bounded.

Theorem 4.16. f ∈ ∗O(Cn) be an (F,G)-bounded internal holomorphic func-
tion. Then for each N ∈ ∗N \ G

FN, the tail (f − fN ) is (F,G) infinitesimal, that
is,

(f − fN )(Fn) ⊂ iG.

And
f̂(z) = lim

N∈G
FN,N→∞

f̂N (z).

f̂(z) = limN∈G
FN,N→∞ f̂N (z) means that for any ε ∈ Ĝ, ε > 0, there exists

N ∈ G
FN, such that for any n ∈ G

FN, n > N , we have |f̂(z)− f̂n(z)| < ε.

Proof. Let N ∈ ∗N \ G
FN, then there is R0 ∈ F+, R0 ≥ 2 such that

1

RN0
∈ iG.

Let us first show that
∑
|ν|≥N+1

1

R
|ν|
0

∈ iG. Indeed,

∑
|ν|≥N+1

1

R
|ν|
0

≤
(

(1/R0)N+1

1− 1/R0

)n
≤ (

1

RN0
)n ∈ iG. (?)

Let z = (z1, . . . , zn) ∈ Fn, then there exists R ∈ F such that |zi| ≤ R for any
i = 1, . . . , n. By Proposition 4.7, there exists C ∈ G such that

|aν |(RR0)|ν| ≤ C for any ν ∈ ∗Nn.

Hence

|(f − fN )(z)| ≤
∑

|ν|≥N+1

|aν |R|ν| ≤
∑

|ν|≥N+1

|aν |(RR0)|ν|
1

R
|ν|
0

≤ C
∑

|ν|≥N+1

1

R
|ν|
0

.

Using the estimate (?), we find that (f − fN )(z) ∈ iG.

We deduce that f̂(z) = limN∈G
FN,N→∞ f̂N (z). Indeed, let ε > 0 in Ĝ and

ε1 ∈ aG such that ε̂1 = ε and z ∈ F. Consider the set

Aε1,z = {k ∈ ∗N : |f(z)− fk(z)| ≤ ε1}.

Aε1,z is an internal set containing ∗N \ G
FN. By the permanence principle

(see Theorem 4.12), there exists N ∈ G
FN such that for any n greater than N

belongs to Aε1,z, that is, for all n ∈ G
FN, n ≥ N , we have |f(z) − fn(z)| ≤ ε1.

Hence for all n ∈ G
FN, n ≥ N , we have |f̂(z)− f̂n(z)| ≤ ε.

Combining the previous theorem with Proposition 3.18 yields:
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Corollary 4.17. Let F be a convex subring of ∗C such that F̂ has a nontrival
real-valued valuation. If f ∈ ∗O(Cn) is an F-bounded internal holomorphic

function over ∗Cn, f(z) =
∑
ν∈∗Nn aνz

ν . Then f̂(z) =
∑
ν∈Nn âνz

ν , for any

z ∈ F̂n. Thus, f̂ defines an entire function over F̂n.

Finally, we note that if we impose a more restrictive condition of boundedness
on internal holomorphic functions, we get essentially constants.

Theorem 4.18 (Liouville theorem). Let f ∈ ∗O(Cn) be an internal holomor-
phic function over ∗Cn. Assume that there exists C ∈ F+ such that |f(z)| ≤ C

for any z ∈ Fn, then f̂ = f̂(0).

Proof. Let f(z) =
∑
ν∈∗Nn aνz

ν be an internal holomorphic function such that
|f(z)| ≤ C for any z ∈ Fn. We combine the overflow principle and the Cauchy

integral formula to obtain the existence of R0 ∈ ∞F+ such that |aν |R|ν|0 ≤ C
for any ν ∈ ∗Nn. Thus for any R ∈ F+ and |ν| ≥ 1, we have

|aν |R|ν| ≤ |aν |R|ν|0 (R/R0)|ν| ≤ CR/R0 ∈ iF.

It follows from Proposition 4.7 that f − f(0) is F-infinitesimal, thus f̂ = f̂(0).

5 Nonstandard hulls of topological vector spaces

5.1 Nonstandard topologies on ∗E

Let E be a K-topological vector space, where K stands either for R or C. De-
note by N0 the filter of neighborhoods of 0 in E. Let bK be the set of bounded
elements of ∗K and iK be the set of infinitesimals of ∗K. Let F be a convex
subring of ∗K, that is, bK ⊂ F ⊂ ∗K. Let us recall that aF = F \ iF denotes the
set of appreciable elements of F.

We define a family of topologies on ∗E parametrized by convex subrings of
∗K as follows: for each p in ∗E, let

Vp(∗E,F) = {p+ r ∗U : U ∈ N0 and r ∈ aF}.

We will often write V(∗E) in place of V0(∗E,F).

Proposition 5.1. V(∗E) is a neighborhood basis of zero in the group (∗E,+).

Proof. First, we have to show that V(∗E) is a filter base on ∗E.
(i) 0 ∈ r∗U for any U ∈ N0 and r ∈ aF.
(ii) For any U, V ∈ N0 and r, s ∈ aF. Let U0, V0 be two balanced neighbor-

hoods of 0, such that U0 ⊂ U and V0 ⊂ V . For W = U0∩V0 and t = min(|r|, |s|),
we have t ∈ aF and t∗W ⊂ r∗U ∩ s∗V.

(iii) For any U ∈ N0, there exists V ∈ N0 such that V − V ⊂ U . Thus for
any r ∈ aF, we get r∗V − r∗V ⊂ r∗U.
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If (E, τ) is a topological vector space, we denote by (∗E, τF) the topology on
∗E generated by Vp(∗E,F).

We notice that for F = bK, the topology on ∗E generated by V(∗E) coincides
with the topology generated by the zero neighborhood basis {∗U : U ∈ N0}.
The latter topology was defined by Henson and Moore in [7].

5.2 F−bounded elements of ∗E

Definition 5.2.

(i) A point p of ∗E is F-bounded if, for each neighborhood U of 0, there exists
r ∈ aF which satisfies p ∈ r ∗U .

The set of F-bounded elements of ∗E will be denoted by F(∗E).

(ii) We define the F-halo of 0 by

µF(0) =
⋂

U∈N0, r∈ aF
r ∗U =

⋂
r∈ aF

r µ(0),

where µ(0) =
⋂
U∈N0

∗U stands for the classical halo of 0 in ∗E.

(iii) For any point p ∈ ∗E, the F-halo of p,

µF(p) = p+ µF(0).

Remark 5.3.

(i) The F-halo of p is exactly the closure of p with respect to the topology
generated by Vp(∗E,F).

(ii) µF(0) is closed under addition and under multiplication by elements of F.

(iii) The set of F-bounded elements of ∗K is F, i.e., F(∗K) = F.

(iv) The topology generated by Vp(∗K,F) coincides with the QS-topology on ∗K,
see [11].

Theorem 5.4. An element p of ∗E is F-bounded if and only if λp ∈ µF(0)
whenever λ ∈ iF.

In particular, this shows that

iF.F(∗E) ⊂ µF(0).

Proof. Suppose that p is F-bounded. Let U be a balanced neighborhood of 0.
Then p ∈ r0

∗U for some r0 ∈ aF. Therefore, p ∈ ω∗U for every ω ∈ ∞F.
Given r ∈ aF and λ ∈ iF, with λ 6= 0. Let ω0 = r/λ. Clearly, ω0 ∈ ∞F and
λp ∈ λω0

∗U ⊂ r∗U . It follows that λp is in µF(0) whenever λ is in iF.
Conversely, if λp ∈ µF(0) for every λ in iF and if U is a neighborhood of 0, then
the internal set A = {ω ∈ ∗R : p ∈ ω∗U} contains ∞F. Thus by the underflow
principle, A must contain r ∈ aF. Therefore, the condition implies that p is
F-bounded.
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The following is an immediate consequence of Theorem 5.4 and Remark 5.3
(ii).

Corollary 5.5.

(i) If p ∈ F(∗E), then µF(p) ⊂ F(∗E).

(ii) F(∗E) is an F-module.

Theorem 5.6.

(i) F(∗E) is a topological F-module, that is, the addition F(∗E) × F(∗E) →
F(∗E) and the scalar multiplication F× F(∗E)→ F(∗E) are continuous.

(ii) F(∗E) is closed in ∗E.

Proof. (i) We have to check that the scalar multiplication (λ, x) 7→ λx satisfies
the following conditions, see Warner[22] page 86 :
(TM1) (λ, x) 7→ λx is continuous at (0, 0),
(TM2) for each c ∈ F(∗E), λ 7→ λc is continuous at 0,
(TM3) for each α ∈ F, x 7→ αx is continuous at 0.

Given U ∈ N0, there exists U0 a balanced neighborhood of 0 such that
U0 ⊂ U . Let r ∈ aF+.
(TM1) : (|λ| ≤ 1)(r ∗U0) ⊂ r ∗U0 ⊂ r ∗U .
(TM2): Let c ∈ F(∗E), then there exists r0 ∈ aF, such that c ∈ r0

∗U0. We have
r/r0 ∈ aF+ and (|λ| ≤ |r|/|r0|) c ⊂ r (|λ| ≤ 1)∗U0 ⊂ r ∗U .
(TM3) Let α ∈ F, we have r

|α|+1 ∈
aF+ and α r

|α|+1
∗U0 ⊂ r ∗U .

(ii) To see that F(∗E) is closed, let x ∈ ∗E with x 6∈ F(∗E). Then there
exists U a neighborhood of 0 in E such that x 6∈ r ∗U for any r ∈ aF+. Let O
be a balanced neighborhood of 0 such that O − O ⊂ U . Let V := x + ∗O. It
follows that V is a neighborhood of x in ∗E satisfying V ∩ F(∗E) = ∅.

Indeed, assume that there exists y ∈ V ∩ F(∗E). Then we find r0 ∈ aF with
y ∈ r0

∗O. Since ∗O is balanced, this implies x ∈ r0
∗O − ∗O ⊂ (|r0| + 1)(∗O −

∗O) ⊂ (|r0|+ 1)∗U , a contradiction.

For each U ∈ N0 and r ∈ aF define

Vr,U = {(x, y) ∈ ∗E × ∗E : x− y ∈ r ∗U}

Let UF be the filter on ∗E × ∗E generated by the filter base {Vr,U : U ∈
N0, r ∈ aF}. Then UF is a translation-invariant uniformity on ∗E which deter-
mine the topology on ∗E generated by Vp(∗E,F).

Theorem 5.7. If F is generated by an asymptotic scale, then (∗E,UF) is com-
plete.
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Proof. Assume that F is generated by the asymptotic scale λn. Let G be a
Cauchy filter on ∗E. Then for each n ∈ N and each U ∈ N0, there exists
Fn,U ∈ G such that

Fn,U − Fn,U ⊂ λn ∗U.

Choose some xn,U ∈ Fn,U and consider the system of internal sets An,U :=
xn,U + λn

∗U . As Fn,U ⊂ An,U , then An,U has the finite intersection property.
Hence, by the saturation property, we conclude that ∩An,U contains some ele-
ment x ∈ ∗E.

We claim that the filter G converges to x, that is, any neighborhood of x
belongs to G.

Let W be any neighborhood of x, then there exists n ∈ N and U ∈ N0 such
that x+ λn

∗U ⊂ W . Let V be a neighborhood of 0 such that V − V ⊂ U . We
have

FV,n ⊂ xn,V +λn
∗V ⊂ (xn,V −x)+(x+λn

∗V ) ⊂ −λn∗V +(x+λn
∗V ) ⊂ x+λn

∗U

Hence x+ λn
∗U ∈ G and so W ∈ G, as claimed.

Using Theorem 5.6 (ii), we deduce the following

Corollary 5.8. If F is generated by an asymptotic scale, then F(∗E) is complete.

Theorem 5.9. Let (G, τ) and (H, τ ′) be K-topological vector spaces and f :
G→ H be a linear mapping. Consider the following

(i) f is continuous at 0.

(ii) ∗f(µτF(0)) ⊂ µτ ′F (0).

(iii) ∗f (F(∗G)) ⊂ F(∗H).

Then (i) ⇐⇒ (ii) =⇒ (iii).
Furthermore, if F is generated by an asymptotic scale, then (i) ⇐⇒ (ii) ⇐⇒
(iii).

Before giving the proof, we need the following lemmas

Lemma 5.10. Let E be K-topological vector space. Then there exists W , a
∗-open neighborhood of 0, such that W ⊂ µF(0).

Proof. According to the saturation principle, there exists V , a ∗- open neigh-
borhood of 0, such that V ⊂ µ(0), see [8]. Let α be a nonzero element in iF.
We claim that W := αV is a ∗-open neighborhood of 0 satisfying W ⊂ µF(0).
Indeed, the transfer principle shows that W is a *-open neighborhood of 0. Fur-
thermore, for any r ∈ aF and for any U , a balanced neighborhood 0, we have
αV ⊂ α ∗U ⊂ r ∗U , thus, W ⊂ µF(0).
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We prove the converse of Theorem 5.4 under some additional assumptions
on F.

Lemma 5.11. Assume that F is generated by an asymptotic scale. Then, for
each p ∈ µF(0) there exists ω ∈ ∞F such that ωp ∈ µF(0). Hence

iF . µF(0) = µF(0).

Proof. Let p ∈ µF(0). For each n ∈ N and U ∈ N0 define the internal set
A(n,U) by

A(n,U) = {x ∈ ∗R : x ≥ λ−n and xp ∈ λn∗U}.

Since µF(0) is closed by multiplication by elements of F, each set A(n,U) is
nonempty. It follows that the sets A(n,U) is a collection of internal subsets of
∗R which has the finite intersection property. Hence, by the saturation principle,
there is ω in the intersection of the collection. That is, ω ∈ ∞F and satisfies
ωp ∈ λn∗U for each n ∈ N and each U ∈ N0. It follows that ωp ∈ µF(0), which
completes the proof.

Remark 5.12. We remark that if (E, |.|) is a normed space then iF . µF(0) =
µF(0) holds for any F a convex subring of ∗R. Indeed, let p be a nonzero element
in µF(0), i.e., |p| ∈ iF. Let ω = 1/

√
|p|. Clearly, ω ∈ ∞F and ωp ∈ µF(0).

Proof. (Theorem 5.9)
(i) =⇒ (ii) f is continuous at 0. So for any V neighborhood of 0 in H

there exists U , a neighborhood of 0 in G, such that f(U) ⊂ V . By the transfer
principle, we get ∗f(r ∗U) ⊂ r ∗V , for any r ∈ aF. Hence ∗f(µτF(0)) ⊂ µτ ′F (0).

(ii) =⇒ (i) Conversely, assume that ∗f(µτF(0)) ⊂ µτ
′

F (0). Let V be an
arbitrary neighborhood of 0 in H. Using Lemma 5.10, we obtain :

There exists W, a *-open nieghborhood of 0, such that ∗f(W ) ⊂ ∗V.

The transfer principle shows that f is continuous.
(ii) =⇒ (iii) Let p ∈ F(∗G). According to Theorem 5.4, the condition

∗f(p) ∈ F(∗H) is equivalent to iF.∗f(p) ∈ µτ ′F (0). Indeed, let λ ∈ iF,

λ∗f(p) = ∗f(λp) ∈ ∗f(µτF(0)) ⊂ µτ
′

F (0),

which completes the proof.
(iii) =⇒ (ii) Assume that F is generated by an asymptotic scale. By Lemma

5.10, we have

∗f(µτF(0)) = ∗f(iF.F(∗G)) = iF. ∗f(F(∗G)) ⊂ iF.F(∗H) ⊂ µτ
′

F (0).

Corollary 5.13. If τ and τ ′ are two vectors topologies on E and F is convex
subring of ∗R generated by an asymptotic scale. Then

(i) τ ⊂ τ ′ ⇐⇒ Fτ (∗E) ⊃ Fτ ′(∗E)
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(ii) τ = τ ′ ⇐⇒ Fτ (∗E) = Fτ ′(∗E)

Definition 5.14. Let (E, τ) be a K-topological vector space. The F-nonstandard

hull of E is the vector space Ê defined by

Ê = ÊF = F(∗E)/µF(0)

equipped with τ̂F, the quotient topology of τF on F(∗E).

The canonical mapping of F(∗E) on Ê will be denoted by π, thus π(p) =
p+ µF(0) for all p ∈ F(∗E).

We remark that the quotient topology on F̂ coincides with the (product of)
order topology, that is,

B̂(0, r) = {α ∈ F̂ : |α| < r}, r ∈ F̂+,

is a neighborhood basis of 0 is F̂.

Proposition 5.15. The quotient mapping π : F(∗E) → Ê is continuous and
open.

By Theorem 5.6 and the universal property of the quotient topology, we have

Theorem 5.16. Ê is a Hausdorff topological F̂-vector space.

F(∗E)× F(∗E) F(∗E)

Ê × Ê Ê

+

π×π π

+

F× F(∗E) F(∗E)

F̂× Ê Ê

·

ŝt×π π

·

Theorem 5.17. If F is generated by an asymptotic scale, then Ê is complete.

Proof. Let Ĝ be a Cauchy filter on Ê and let G be the filter on F(∗E) generated

by π−1(Ĝ). One can easily check that π−1(Ĝ) is a Cauchy filter on F(∗E), hence
by Corollary 5.8, it converges to some x ∈ F(∗E). The continuity of the mapping

π implies that Ĝ = π(G) converges to π(x).

Proposition 5.18. If E is a normed space, then topology of τ̂F induces on E
the discrete topology.

Proof. If E is Hausdorff, then E is a subspace of Ê. Indeed, let x ∈ E such that
π(x) = 0. Hence x ∈ µF(0) ∩ E ⊂ µ(0) ∩ E = {0} = {0}.

Using Theorem 5.9, we deduce the following

Theorem 5.19. Let G and H be two K-topological vector spaces and f : G→ H
be a continuous linear mapping. Then f gives rise to a continuous F̂-linear
mapping f̂ : Ĝ→ Ĥ defined by

f̂(x̂) = f̂(x) for all x̂ ∈ Ĝ.
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6 Nonstandard hulls of locally convex spaces

Let E be a locally convex topological vector space topologized through a family
of seminorms (pj)j∈J . Then F(∗E), the set of F-bounded points of ∗E defined
in section 5.2, is given by

F(∗E) = {x ∈ ∗E : pj(x) ∈ F for all j ∈ J},

and
µF(0) = {x ∈ ∗E : pj(x) ∈ iF for all j ∈ J}.

The topology (∗E, τF) is generated by {p−1
j (0, r) : r ∈ aF+} as a subbase.

In other words, τF coincides with the initial topology on ∗E making all ∗pj :
∗E −→ ∗R+ continuous, where ∗R is equipped with the QS-topology generated
by F.

The family of seminorms pj induces on Ê

p̂j : Ê → F̂+.

The quotient topology τ̂F on Ê coincides with the initial topology making
all the seminorms p̂j : Ê → F̂+ continuous, where F̂ is equipped with the order
topology.

6.1 Examples

(i) Let E = E(Ω), the space of smooth functions over Ω, an open subset
of Rn. E is topologized through the family of seminorms pKi,j(f) =
supx∈Ki,|α|≤j |∂

αf(x)|, where (Ki)i∈N is an exhausting sequence of com-
pact subsets of Ω.

F(∗E(Ω)) = {f ∈ ∗E(Ω) : ∂αf(ns(∗Ω)) ⊂ F for all α ∈ Nn},

µF(0) = {f ∈ ∗E(Ω) : ∂αf(ns(∗Ω)) ⊂ iF for all α ∈ Nn},
where ns(∗Ω) stands for the nearstandrad points of ∗Ω.

The space Ê(Ω) = F(∗E(Ω))/µF(0) was studied in details in [20] as the
nonstandard counterpart of Colombeau algebras.

(ii) Let (X,OX) be a separable analytic space, and U ⊂ X any open set. Re-
call that OX(U) has a structure of a Fréchet space defined by the topology
of compact convergence.

F(∗OX(U)) = {f ∈ ∗OX(U) : f(ns(∗U)) ⊂ F},

µF(0) = {f ∈ ∗OX(U) : f(ns(∗U)) ⊂ iF}.

The space ÔX(U) = F(∗O(U))/µF(0) is the F-nonstandard hull of OX(U).

Moreover, the mapping U 7→ ÔX(U) defines a separated presheaf on X as

any element f ∈ ÔX(U) gives a pointwise mapping f̂ : ns(∗U)/iFn → F̂.
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Remark. Let G be a Fréchet sheaf on a topological space X with a count-
able topology, that is, G is a sheaf of vector spaces on X such that G(U)
is a Fréchet space for every U ⊂ X, an open subset of X, and for every
V ⊂ U , the restriction-homomorphism G(U) → G(V ) is continuous. Let

Ĝ(U) be the F-nonstandard hull of G(U). If F̂ has a nontrivial real-valued

valuation compatible with its order, then the space Ĝ(U) is a complete with
respect to a countable sequence of ultra-seminorms. Hence, using Theorem

5.19, we deduce that the mapping U 7→ Ĝ(U) gives a Fréchet presheaf on
X.

A fundamental example of a Fréchet sheaf is given by a coherent OX-
module, where (X,OX) is a complex space.

(iii) Let us consider Z, the ring of the integers equipped with |.|p, the p−adic
norm. Recall that if n ∈ Z \ {0}, |n|p = p−νp(n), where νp denotes the
p−adic valuation for Z. Let F be a proper convex subring of ∗R, that is,
bR ⊂ F ( ∗R.
Then the set of F-bounded and F-infinitesimal elements are giving by

F(∗Z) = {n ∈ ∗Z : |n|p ∈ F} = ∗Z,

µF(0) = {n ∈ ∗Z : |n|p ∈ iF}.

One can easily check that µF(0) is an external prime ideal in ∗Z.

The following proposition provides a generalization of Theorem 18.4.1 in
Goldblatt [6], where the author considered the case F = bR.

Proposition. Let n be a nonzero hyperinteger n ∈ ∗Z. The following are
equivalent

(i) |n|p ∈ iF.

(ii) νp(n) ∈ ∗N \ F
bRN.

(iii) n is divisible by pk for all k ∈ F
bRN.

(iv) n is divisible by pK for some K ∈ ∗N \ F
bRN.

The proof is a direct consequence of the following elementary lemma

Lemma. log(∞F+) ∩ ∗N = ∗N \ F
bRN.

Proof. (Proposition)
(i) ⇐⇒ (ii) : |n|p ∈ iF⇐⇒ pνp(n) ∈ ∞F+ ⇐⇒ νp(n) ∈ log(∞F+) ∩ ∗N.
(ii) ⇐⇒ (iii): pk/n⇐⇒ k ≤ νp(n).
(iii) ⇐⇒ (vi) : Follows from the overflow principle, see Theorem 4.12.
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Let us consider θp the following homomorphism of rings

θp : ∗Z −→ lim←−
k∈ F

bR
N

∗Z/pk ∗Z

defined by θp(n) = (n mod pk)k∈ F
bR

N. Using Proposition 6.1, we deduce

that ker θp = µF(0). Hence

ẐF ↪→ lim←−
k∈ F

bR
N

∗Z/pk ∗Z.

where ẐF denotes the F-nosntandard hull de ∗Z, that is, ẐF = F(∗Z)/µF(0) =
∗Z/µF(0).

We obtain the following commutative diagram

ẐF lim←−
k∈ F

bR
N

∗Z/pk ∗Z

Ẑ lim←−
k∈N

∗Z/pk ∗Z'

Here, Ẑ denotes the bR-nonstandard hull of ∗Z, which is isomorphic to Zp,
the ring of p−adic integers, see Goldblatt [6].

A Spilling Principles

We recall several spilling principles in terms of a proper convex subring F of
∗R. We should note that the familiar underflow and overflow principles in
nonstandard analysis follow as a particular case for F = bR.

Theorem A.1 (Spilling Principles). [20] Let F be a proper convex subring of
∗R and A ⊂ ∗R be an internal set. Then:

(i) Overflow of F : If A contains arbitrarily large numbers in F, then A
contains arbitrarily small numbers in ∗R \ F. In particular,

F \ iF ⊂ A ⇒ A∩ (∗R \ F) 6= ∅

(ii) Underflow of F \ iF : If A contains arbitrarily small numbers in F \ iF,
then A contains arbitrarily large numbers in iF. In particular,

F \ iF ⊂ A ⇒ A∩ iF 6= ∅
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(iii) Overflow of iF : If A contains arbitrarily large numbers in iF, then A
contains arbitrarily small numbers in F \ iF . In particular,

iF ⊂ A ⇒ A∩ (F \ iF) 6= ∅

(iv) Underflow of ∗R \ F : If A contains arbitrarily small numbers in ∗R \ F,
then A contains arbitrarily large numbers in F. In particular,

∗R \ F ⊂ A ⇒ A∩ (F \ iF) 6= ∅

We should mention that these spilling principles fail if F = ∗R and iF = {0}.
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